1

Structural control of hydrothermal dolomitization in the Keg River and Slave Point Formations, Sierra area, NE British Columbia, and analogies with the Ghawar Field, Saudi Arabia

Summary

We have used a combination of detailed core description and interpretatio of High Resolution AeroMagnetic (HRAM) data to suggest that the and Slave Point Formations in the greater Sierra area is controlled by Riedel shears in a large scale, left lateral wrench fault system. We note that a similar model has been proposed for the hydrothermal dolomitization Jurassic Arb D Formation in the Ghawar Field in Saudi Arabia.

There is no core display to accompany this poster.

Basement Terrane Interpretation

Location of study area in NE British Columbia, shown on a image of the total magnetic field with terrane interpretatio shown in dashed lines. The study area straddles

The Fort Simpson Terrane magnetic high is interpreted to represent a pre-collisional magmatic arc (Fort Simpson Arc) accreted onto the eastern margin of the Nahanni Terrane by west dipping subduction zone. The Hottah Terrane is cut by dikes pre-date collison of the Hottah and Ft. Simpson Terranes during the Wopmay Orogeny (ca 1.85 Ga).
Reactivation of these structures during the Devonian may have played a role in localizing both the platform margin and reef development, and providing conduits for the flow of fluid responsible for limestone leaching and dolomitization

Stratigraphic column for NE British Columbia showing Keg River Fm. in magenta and Slave Point Fm. in blue (after Reinson et al., 1993).

The study area is within a region that contains a number of significant gas fields reservoired within an extensive mid-Devonian reef system. Here we see the Slave Point edge and some of the major producing fields. For this study, 7 wells (20 cores) from the Yoyo and Sierra pools were
described. Note the en echelon pattern to the western edge of the Petioto Bank. (Adapted from Phipps, 1989.)

The patterns of dolomitization are easily recognizable in this cross section of the Yoyo Reef and the adjacent bank edge. (Reinson et al., 1993) Note that the dolomitization extends higher in the section on the bank edge than in the isolated reef.
The absence of hydrothermal dolomite in the Slave Point buildups outboard of the regional shelf margin (e.g. c--78-C)
is consistent with their isolated and insulated stratigraphic position in a blanket of shale, even though the location occurs on a mapped strike slip fault. Shales lack both the rigidity to fracture, and the permeability to transmit fluids.
$\begin{array}{ll}\text { Host Strata/Age: } & \text { Keg River and Slave Point Formations } \\ \text { Type Area: } & \text { Northeast British Columbia, Canada }\end{array}$ Present Depth: 1950 to 2225 m
Representative HC Pools/Mineral Deposits: Yoyo, Sierra, Kotcho Lake Fields Investigative Methods: High Resolution AeroMagnetic (HRAM) interpretation, core description

Interpretation of Key Conditions of Dolomitization

Substrate: Burial Depth: Temperature
Timing: Fluid Type: Fluid Transport
amphiporid and dendroid stromatoporoid floatstone and grainstone/packstone probably less than 500 m stimated at 120° to $160^{\circ} \mathrm{C}$
Late Devonian to Early Mississippian
hydrothermal brines
faults and underlying aquifer (?)

b-98-E, 94-I-13: 68m Keg River

Coarse crystalline void-filing saddle dolomite crystals
(upper left, lower right) extending outward from
 inclusion-rich replacive saddle dolomite along a sty
with minor intercrystalline porosity (blue epoxy).

The common occurrence of zebra fabrics with integral inclined shear micro-fractures in at least 9 of the Keg River cores is of even greater significance than the presence of saddle dolomite (b-29-I, fig. 5 d). We believe that zebra fabrics are the product of hydro-
fracturing under shear stress and are formed proximal to faults fracturing under shear stress, and are formed proximal to faults
(particularly extensional and/or strike slip types), e.g. d-57-H, fig. 5a. The shear micro-fractures compartmentalize the zebra fabric; that is, hydro-fracturing and 'expansion' of the zebra fabric is bounded by inclined shear micro-fractures, e.g. b-29-I, fig. 5 b . In Yoyo b-98-E, fig. 5 c , the upward increase through a 40 m interv well as the frequency and size (thickness) of zebra fracture sets is consistent with an upward decrease in confining stress (pressure release) at the time of zebra hydro-fracturing

Structural control of hydrothermal dolomitization in the Keg River and Slave Point Formations, Sierra area, NE British Columbia, and analogies with the Ghawar Field, Saudi Arabia

Figures 6 and 7 c show the 1.2 to 4.8 kilometer band-pass fiter of the total magnetic field grid. This filter was data (the broad highs and lows associated with the iterpreted terrane blocks). The filter also suppresses the very short wavelength component, associated with near ace feaures, such as river channels, residual cusiz edges of the terrane blocks, and the fault fabric of the lowe sedimentary section and Precambrian basement. Two rthwesterly magnetic trends, which pass through the Sierra study area, are interpreted with thick gold lines as strike slip faults. Three other strike slip fauts, oriented orth-south, were interpreted in the eastern part of the
ubtle west-northwesterly trends, interpreted with thi ashed lines, also become apparent using this filter. Thes were interpreted as Riedel shears within the West Petito Wrench Fault System.

References Cantrell, D.L., et al, in press 2004. Title unknown. GeoArabia, v.9, no.2, 1-26 Phipps, G.G., 1989. Exploring for dolomitized Slave Point carbonates in northeastern British Columbia. Geophysics, v. 54, p. 806-814 . Pilkington, M. Wiles, W. F., Ross, G. M., and Roest, W. R., 2000. Potential field signatures of buried Precambrian Basin. Can. Jour. Earth Sci., 37, 14531471. Reinson, G., Lee, P.J., Warters, W., Osadetz, K.G., Bell, L.L., Price, P.A., Trollope, F., Campbell, R.I., and Barclay, J.E., 1993. Devonian gas resources of the Western Canada Sedimentary Basin, Part I: Geological play analysis and resource assessment. Geol. Surv. Can. Bull. 452, p. 36-68.

Interpreted intra-sedimentary structure
grain and Key Riveredge and wells

Interpreted intra-sedimentary structure
grain and Slave Point edge and wells

Our understanding of the Proterozoic construction of the Western Canada Sedimentary Basin (WCSB) is largely dependent upon our interpretation of aeromagnetic data. In the study area, we would like to highlight two important features identified by aromagnetic data: a terrane boundary partially coincident with the platform edge, and a wrench-fault system trending through the isolated Sierra and Yoyo build-ups. Published interpretations of the boundaries (GEDCO updated version after Pilkington et al. 1994) place the Sierra Field just west of the boundary between the Fort Simpson and Hottah Terranes.

The Riedel shears in th WNW trends were formed slip faults of the West Petito Wrench Fault System. These extensional fractures are the
likely local conduits for hydrothermal fluids. Due to the basis of the interpreted Riedel shears, the Wes Petitot Wrench Fault Systen has a left lateral motion
The photographic example The photographic example
shows Riedel shears from an outcrop of the Devonian Old

ield (the world's largest oil field), in Saudi Arabia, he Jurassic Arab ' D ' Formation. Using the extensive well control in the field, Cantrell et a. they interpret three different kinds of dolomite, it is the occurrence of baroque (hydrothermal) dolomite, distributed vertically along fractures, that controls the variation in the percentage of the dolomite in the reservoir. They interpret this striking pattern of dolomite distribution as being structurally controlled by Riedel shears in a right lateral rench system. The wrench system is presumably related to stresses arising from the collision of the Arabia with Eurasia

Conclusion

nsive dolomitization nd fracturing in Keg River facies with low initia
permeability in the Sierra area. Aeromagnetic interpretation identifies the location and geometry of 5 major strike slip faults within the study are Both the Sierra and Yoyo reefs occur betwee identified between these faults ' A ' and ' B ' The interpretation of Riedel shears on aeromagneic interpretation is a powerful exploration too Large-scale strike-slip faults help to establish play area, but the presence of Riedels permeability facies will identify prospects. The probability of finding excellent reservoir in the vicinity of Riedel shears is very high, due localized flow of thermobaric dolomitizing fluid. The Slave Point Fm has been dolomitized only i the paleo-shelfal position. Experience in other parts of the basin also suggests that Slave Point
build-ups within the shale basin do not make good exploration candidates.

Acknowledgements
We thank Husky Energy Inc. for permission to Danielle Robertson for assembling this poster.

